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Bayesian Selection and Clustering of Polymorphisms
in Functionally Related Genes

David B. DUNSON, Amy H. HERRING, and Stephanie M. ENGEL

In epidemiologic studies, there is often interest in assessing the relationship between polymorphisms in functionally related genes and a
health outcome. For each candidate gene, single nucleotide polymorphism (SNP) data are collected at a number of locations, resulting in
a large number of possible genotypes. Because instabilities can result in analyses that include all the SNPs, dimensionality is typically
reduced by conducting single SNP analyses or attempting to identify haplotypes. This article proposes an alternative Bayesian approach for
reducing dimensionality. A multilevel Dirichlet process prior is used for the distribution of the SNP-specific regression coefficients within
genes, incorporating a variable selection-type mixture structure to allow SNPs with no effect. This structure allows simultaneous selection
of important SNPs and soft clustering of SNPs having similar impact on the health outcome. The methods are illustrated using data from a
study of pro- and anti-inflammatory cytokine polymorphisms and spontaneous preterm birth.

KEY WORDS: Bayesian; Clustering; Dirichlet process; Genetic association; Hierarchical regression; Multiple testing; Nonparametric
Bayes; Single nucleotide polymorphisms; Sparse regression.

1. INTRODUCTION

In epidemiologic research, there is commonly interest in the
association between multiple, closely related exposures and a
health outcome. Some examples include drinking water dis-
infection byproducts, agricultural chemicals, and single nu-
cleotide polymorphisms (SNPs) in candidate genes. When the
number of exposures is large (e.g., 30+) and the exposures are
correlated (e.g., due to linkage disequilibrium between poly-
morphisms), it is well known that maximum likelihood estima-
tion can result in unstable estimates and inferences. For this
reason, analysts typically apply dimensionality reduction tech-
niques, with the most common being (1) consider exposures
one at a time in univariate analyses; (2) collapse exposures into
class-specific summaries; and (3) run a model selection pro-
cedure, such as stepwise selection, to obtain a parsimonious
model on which to base final inferences. There are clear prob-
lems with each of these approaches: (1) can produce mislead-
ing results by not adjusting for correlated exposures, (2) can
discard valuable information on variability in the effect within
a class, and (3) can result in overestimation of the regression
coefficients due to selection bias.

For these reasons, many authors have proposed hierarchi-
cal regression procedures, which shrink the exposure-specific
regression coefficients toward a common distribution, using
empirical Bayes (Thomas et al. 1985), “semi-Bayes” (Green-
land 1992, 1993), or fully Bayes approaches. Greenland (1993)
provided a review and demonstrated improved performance of
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the empirical and semi-Bayes approaches relative to methods
based on maximum likelihood estimation (MLE). Such hierar-
chical regression procedures have been used in numerous ar-
ticles in the epidemiologic literature. For example, De Roos,
Poole, Teschke, and Olshan (2001) considered applications to
multiple paternal occupational exposures and neuroblastoma in
the offspring, and Hung et al. (2004) considered applications to
genetic association studies with multiple markers. For related
methods for multiple outcomes, refer to Meng and Dempster
(1987) and Coull, Hobert, Ryan, and Holmes (2001).

These methods are based on shrinking the exposure-specific
regression coefficients toward a normal prior distribution, po-
tentially with unknown mean and variance. Although this
shrinkage certainly improves the stability of estimates, many
epidemiologists would prefer to avoid the assumption that the
regression coefficients for the different exposures follow a nor-
mal distribution. In addition, there is typically interest in group-
ing or clustering the different exposures based on their effects
on the outcome. In particular, one wishes to identify exposures
having similar effects, including those that are not associated
with the outcome, in drawing mechanistic conclusions. Al-
though grouping can be done subjectively based on examina-
tion of estimated regression coefficients, it would be appealing
to have a formal clustering procedure.

This problem is somewhat related to subset selection in re-
gression, which focuses on identifying predictors with nonzero
coefficients from among a potentially high-dimensional set of
candidates (refer to George and McCulloch 1997; Clyde and
George 2004, for reviews of Bayesian approaches). However,
following standard epidemiologic practice, we are at least as
interested in estimating regression coefficients for the different
exposures and in grouping exposures according to the magni-
tude of their effect, as we are in identifying exposures that are
associated with the response. Hence, the problem is one of clus-
tering the regression coefficients incorporating information on
the exposure class.

The Bayesian approach provides a natural framework for
clustering of the exposures in this manner. For a recent ar-
ticle on Bayesian variable selection and clustering in high-
dimensional data, refer to Tadesse, Sha, and Vannucci (2005).
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Their focus was on clustering samples of data into groups while
simultaneously selecting discriminating variables. In contrast,
our focus is on clustering not the data but the unknown expo-
sure effects into groups, while allowing an unknown subset to
have no association with the outcome. A related problem was
considered by Gopalan and Berry (1998), who used a Dirichlet
process (DP) prior (Ferguson 1973, 1974) to cluster treatment
groups in a clinical trial in order to adjust for multiple compar-
isons. From a Bayesian perspective, the multiple-comparison
problem can be considered as an issue of appropriately choos-
ing a prior to account for dependency in multiple, related hy-
potheses (refer to Westfall, Johnson, and Utts 1997; Berry and
Hochberg 1999; Gonen, Westfall, and Johnson 2003; Berry and
Berry 2004; Dunson 2005).

Although the Gopalan–Berry (1998) approach could be di-
rectly modified to allow clustering of the regression coefficients
for the different exposures, such an approach would not in-
corporate information on exposure class or allow identification
of exposures having no effect. To perform simultaneous vari-
able selection and clustering, both within and across exposure
classes, this article proposes an alternative approach. In the one-
class case, our approach relies on a mixture prior, with a point
mass for exposures with no effect and a DP component to clus-
ter the nonnull exposures. In the multiple-class case, a multi-
level DP structure is chosen, allowing common clusters across
exposure classes, while also introducing class-specific clusters.

Section 2 motivates the problem through application to se-
lection and clustering of polymorphisms in functionally related
genes. Section 3 describes the regression model and proposes
the hierarchical clustering prior. Section 4 develops methods
for posterior computation. Section 5 applies the method to data
on cytokine polymorphisms and risk for spontaneous preterm
birth, while also presenting results from simulation studies.
Section 6 contains a discussion.

2. IDENTIFYING POLYMORPHISMS
PREDICTING DISEASE

This article is motivated by the problem of selection and clus-
tering of polymorphisms in functionally related genes. Using
the nomenclature of Section 1, genes correspond to classes and
exposures to single nucleotide polymorphisms (SNPs). For a
given gene, SNPs can be collected within the coding region,
which consists of the sequence of amino acids that codes di-
rectly for the protein product of the gene, within regulatory
regions upstream of the coding region, or within intronic se-
quences. SNPs that occur within regulatory regions are thought
to be much more likely to affect biologic function and gene ex-
pression.

For subject i, i = 1, . . . , n, and gene c, c = 1, . . . ,C, the
SNP data consist of the individual’s genotype at pc loci. Let
gicl ∈ {1,2,3} denote a categorical variable indicating the geno-
type of individual i for locus l within gene c, with gicl = 1 if
homozygous for the more common allele, gicl = 2 if heterozy-
gous, and gicl = 3 if homozygous for the minor allele. Includ-
ing the genotype data for each loci within each of C function-
ally related genes, we obtain the vector gi = (g′

i1, . . . ,g′
iC)′,

with gic = (gic1, . . . , gic,pc )
′ for c = 1, . . . ,C.

Scientific interest focuses on assessing the relationship be-
tween gi and a health outcome, yi , adjusting for potential
confounders, zi = (zi1, . . . , ziq)′. For example, we are inter-
ested in relating SNPs in cytokine gene regulatory regions to
risk for spontaneous preterm birth using data from the Preg-
nancy, Infection, and Nutrition (PIN) study (Savitz et al. 1999),
which enrolled women between 24 and 29 weeks of gesta-
tion, collecting blood at the intake visit. As shown in Table 1,
there are 12 cytokines (soluble proteins that mediate and reg-
ulate immunity and inflammation) of interest, including IL1α,
IL1β , IL2–IL6, IL10, IL13, LTA, TGFβ1, and TNF. The num-
ber of sites within regulatory regions at which SNP data are
collected ranges from one to three per cytokine (22 total),
with three genotypes per site. The genotypes varied in fre-
quency, with

∑n
i=1 1(gicl = h), h = 1,2,3, ranging from 8 to

221, with n = 447 (excluding women with missing genotype
data).

Results for one-SNP-at-a-time logistic regression analyses,
with spontaneous preterm birth (yi = 1 preterm, yi = 0 full
term) as the outcome, are provided in Table 1. The genotype
at a single locus is included in the model through the use of two
indicator values, with the gicl = 1 category used as the refer-
ence. Results are stratified on ethnicity (white, African Amer-
ican), because African American women have higher rates of
spontaneous preterm birth and potentially different genetic fac-
tors. An association between a marker and disease may occur if
the marker is in linkage disequilibrium with a disease gene or
because of population substructure (admixture). Such admix-
ture is thought to be particularly apparent in African Americans,
potentially leading to false positives (Ziv and Burchard 2003).
Although all three genotypes were represented in the study for
each ethnic group, some categories had no women with spon-
taneous preterm births, so certain genotype-specific odds ratios
could not be obtained. In addition, we were unable to obtain
convergence for the full model with all SNPs included simulta-
neously.

Focusing on a smaller group of common proinflammatory
cytokines and two genotype categories per SNP, Mulherin En-
gel et al. (2005a) reported an association with spontaneous
preterm birth based on a semi-Bayes analysis (refer also to Mul-
herin Engel et al. 2005b). Our interest here is in identifying the
specific SNPs predictive of spontaneous preterm birth, while
also clustering SNPs within and across cytokines that have a
similar risk of spontaneous preterm birth. In addition, we want
to address the curse-of-dimensionality problem that occurs as
additional loci are added to the model by using a Bayesian ap-
proach, with a prior that favors sparse regression models. In
particular, it is expected that genetic variation at most loci will
be unimportant in predicting risk, but that there is one or per-
haps a few important variants hidden in a sea of nulls. Sparse
regression models have been proposed by several authors as
a biologically motivated approach for analyzing massive ge-
nomics datasets. For example, Carvalho et al. (2005) and Lu-
cas et al. (2006) proposed sparse modeling approaches moti-
vated by gene expression data. Our approach is conceptually
different, being based on a combination of variable selection
and clustering.
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Table 1. Summary of one-site-at-a-time logistic regression analyses with spontaneous preterm birth as the outcome variable

Odds ratio for spontaneous preterm birth

Cytokine Site Genotype White African American

IL1α +4845 GG 1.0 1.0
GT 1.1 (.6, 1.9) .8 (.5, 1.5)

TT 1.8 (.6, 5.2) ∗
IVS5-109 AA 1.0 1.0

AC .7 (.4, 1.3) 1.1 (.6, 1.9)

CC .4 (.1, 1.7) 1.1 (.4, 3.2)

IL1β 1061 CC 1.0 1.0
TC 1.8 (1.0, 3.3) .7 (.3, 1.6)

TT 1.1 (.4, 3.0) 1.1 (.5, 2.5)

+3594 CC 1.0 1.0
CT 1.2 (.7, 2.1) .9 (.5, 1.7)

TT ∗ ∗
−581 TT 1.0 1.0

TC 2.0 (1.1, 3.8) .6 (.3, 1.4)

CC 1.0 (.4, 2.8) 1.1 (.5, 2.4)

IL2 −385 TT 1.0 1.0
TG 1.6 (.9, 2.9) .7 (.3, 1.6)

GG 1.1 (.4, 2.9) ∗
IL4 −589 CC 1.0 1.0

CT .8 (.4, 1.6) .7 (.3, 1.7)

TT 28.4 (3.3, 241.5) .9 (.4, 2.0)

−1099 TT 1.0 1.0
GT .7 (.3, 1.9) 1.8 (1.0, 3.3)

GG ∗ .5 (.1, 3.9)

−33 CC 1.0 1.0
TC .8 (.4, 1.7) 1.9 (1.0, 3.7)

TT 14.9 (2.9, 76.5) 1.7 (.7, 4.0)

IL5 −746 TT 1.0 1.0
TC 1.4 (.4, 5.0) .9 (.5, 1.6)

CC 2.5 (.7, 8.7) .7 (.2, 3.6)

IL6 −174 GG 1.0 1.0
CG 1.1 (.6, 2.1) 1.1 (.5, 2.6)

CC 1.2 (.5, 2.7) ∗

3. HIERARCHICAL CLUSTERING OF
GENETIC POLYMORPHISMS

3.1 Model and Background

For simplicity, we will focus on the binary response regres-
sion model:

Pr(yi = 1|gi , zi ) = L
(

z′
iκ +

C∑

c=1

pc∑

l=1

3∑

h=1

1(gicl = h)βclh

)

,

(1)

where L :� → (0,1) is a monotone link function, κ = (κ1, . . . ,

κq)′ are unknown coefficients including the intercept and slopes
for the confounders, and βclh is a coefficient for genotype h

within locus l of gene c. As a convention to ensure frequentist
identifiability, one could let βcl1 = 0 for all c, l, so that individu-
als who are homozygous for the more common allele are placed
in a baseline category. Even with this constraint, there are
2
∑C

c=1 pc coefficients for the genotype effects. Hence, when
the number of loci is moderate to large or

∑
c,l,h 1(gicl = h) is

small for some c, l, h (as is typically the case), maximum likeli-
hood estimation of model (1) runs into difficulties. In particular,

the estimated regression coefficients, β̂ , can be unstable, taking
values known to be unreasonable a priori, and a unique MLE
may not exist.

A natural solution to this problem is to borrow information
across SNPs for functionally related genes, while favoring a
sparser form of regression model (1) having many of the βclh

coefficients equal to 0 and only a few unique values of the re-
maining coefficients. Allowing βclh coefficients to equal 0 cor-
responds to our prior expectation that most of the genetic vari-
ants will have essentially no impact on disease risk. Borrow-
ing of information across functionally related genes is also well
motivated biologically. Consider the cytokine application and
suppose that one finds that an SNP in IL1α increases the log
odds of preterm birth by .5. One would then be more optimistic
about finding a similar magnitude of effect for genetic variants
in related cytokines.

Cytokines with a similar mechanism and an SNP that causes
the same magnitude of change in gene expression might have a
very similar log odds ratio. In the absence of additional data that
would allow reliable grouping of cytokines a priori, we treat
them as exchangeable, while allowing flexible clustering. Even
if one does not believe exact clustering of the coefficients is bio-
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Table 1. (Continued.)

Odds ratio for spontaneous preterm birth

Cytokine Site Genotype White African American

IL10 −854 CC 1.0 1.0
TC .8 (.5, 1.5) .9 (.5, 1.7)

TT 1.0 (.4, 2.9) .5 (.2, 1.1)

−627 CC 1.0 1.0
.8 (.5, 1.5) 1.0 (.5, 1.8)

.7 (.2, 2.2) .5 (.2, 1.3)

−1082 AA 1.0 1.0
AG 1.5 (.7, 3.1) 1.1 (.6, 2.0)

GG 1.5 (.7, 3.5) 1.2 (.5, 3.1)

IL13 +2034 GG 1.0 1.0
AG 1.3 (.7, 2.3) .8 (.5, 1.5)

AA 5.4 (1.8, 16.3) .4 (.0, 3.0)

−1112 CC 1.0 1.0
TC 1.6 (.9, 2.9) 2.2 (1.2, 4.2)

TT 2.6 (.9, 8.1) 1.1 (.4, 3.0)

IVS3-24 CC 1.0 1.0
TC 1.3 (.7, 2.3) 1.1 (.4, 2.6)

TT 4.7 (1.6, 13.9) .9 (.4, 2.2)

LTA IVS1+90 AA 1.0 1.0
AG 1.3 (.7, 2.3) 1.4 (.7, 2.8)

GG 1.8 (.7, 4.4) .9 (.4, 2.1)

IVS1-82 GG 1.0 1.0
CG 1.7 (.9, 3.2) 1.3 (.7, 2.3)

CC 1.3 (.5, 3.2) .9 (.2, 3.5)

TGFβ1 L10P TT 1.0 1.0
TC .8 (.4, 1.4) 1.1 (.6, 2.0)

CC .5 (.2, 1.3) 1.2 (.5, 2.7)

−1347 CC 1.0 1.0
CT .8 (.4, 1.5) 1.2 (.7, 2.1)

TT .5 (.1, 1.7) 1.4 (.3, 5.5)

TNF −308 GG 1.0 1.0
GA 1.6 (.9, 2.9) 1.0 (.5, 2.0)

AA 3.3 (.9, 11.9) .5 (.1, 3.9)

∗No women with spontaneous preterm births in this category.

logically realistic, the approach is justified as adaptively group-
ing the SNPs into categories based on the magnitude of their
effects to stabilize estimation in high dimensions. In addition,
the clustering is soft, so the estimated SNP-specific coefficients
will differ even for SNPs in the same cluster with greater than
50% posterior probability.

Removing the βcl1 = 0 constraint, we propose the following
nonparametric prior for the SNP-specific coefficients:

βclh ∼ Gc for h = 1,2,3, l = 1, . . . , pc, c = 1, . . . ,C. (2)

Here, Gc is the unknown distribution of the regression coef-
ficients for SNPs in gene c, and G = {Gc, c = 1, . . . ,C} is the
collection of unknown distributions for the SNPs in the different
genes. Within a gene, dependence in the regression coefficients
is accommodated by assuming that the SNP-specific regression
coefficients are drawn from a common distribution. Between
genes, dependence is accommodated by assuming that the dif-
ferent distributions in the collection G have similar features.

3.2 Simultaneous Variable Selection and Clustering

We first consider the case in which all the SNPs under study
relate to a single gene, so that C = 1. In this case, repressing

the c subscript, we let βlh
iid∼ G for l = 1, . . . , p and h = 1,2,3.

Then, to allow for uncertainty in G, while clustering the SNPs
having identical regression coefficients, we choose the follow-
ing mixture prior:

G = π0δ0 + (1 − π0)G
∗, G∗ ∼ DP(α0G0), (3)

where 0 ≤ π0 ≤ 1 is a point mass probability, δθ denotes the
Dirac measure concentrated at θ , and G∗ is a random proba-
bility measure assigned a DP prior, with precision α and base
probability measure G0. Prior (3) falls within the framework
described in MacEachern, Kottas, and Gelfand (2001).

Note that (3) is related to mixture priors used routinely in
variable selection applications (George and McCulloch 1997;
Clyde and George 2004), with the important distinction that G∗
is replaced with a unimodal parametric density in most of the
previous literature in this area. In particular, the most common
choice corresponds to a normal density centered on 0, although
heavier tailed distributions have also been considered.

Without restrictions, model (1) is overparameterized, be-
cause we include both an intercept, κ1, and coefficients for
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each of the genotype categories. This overparameterization al-
lows the genotypes to be treated as exchangeable, avoiding the
need to specify a reference genotype at each locus in advance.
Instead, we adaptively choose the baseline category as corre-
sponding to those genotypes having βlh = 0. If βlh = 0 for
h = 1,2,3, then polymorphisms at locus l are not predictive
of disease risk, and the locus effectively drops out of model (1).
To avoid ambiguity, the baseline category is defined to corre-
spond to the low-risk group by restricting G∗ to have positive
support on �+.

Because G∗ is almost surely discrete under the DP prior,
nonzero coefficients will also be clustered together with posi-
tive probability. This allows cases, such as βl1 = 0, βl2 = βl3 =
.5, which implies that having one or two copies of the minor al-
lele at locus l conveys the same increase in the risk of disease.
Such clustering can also occur across locations, for example,
βlh = βl′h′ .

To obtain more insight into the variable selection and clus-
tering process, we consider some theoretical properties implied
by the DP prior for G∗. First, following Sethuraman’s (1994)
stick-breaking representation:

G = π0δ0 + (1 − π0)

∞∑

h=1

πhδθh
,

(4)
πh

∏h−1
l=1 (1 − πl)

iid∼ beta(1, α0), θh
iid∼ G0,

where {πh,h = 1, . . . ,∞} is an infinite sequence of random

weights, with πh = Vh

∏h−1
l=1 (1 − Vl) and Vh

iid∼ beta(1, α0)

for h = 1, . . . ,∞, and � = {θh,h = 1, . . . ,∞} is an infinite

sequence of random atoms, with θh
iid∼ G0. Letting θ0 = 0,

π̃0 = π0, and π̃h = (1 − π0)πh, h = 1,2, . . . ,∞, we have
G = ∑∞

h=0 π̃hδθh
. Hence, G is an infinite mixture of atoms at

random locations, with one fixed atom at 0. The other loca-
tions are generated from G0, which we assume corresponds to
N+(μ0, σ

2
0 ), which denotes a N(μ0, σ

2
0 ) density truncated be-

low by 0.
To study the clustering behavior, it is of interest to extend

the DP results of Antoniak (1974) to prior (3), which mixes
in a point mass at 0. Let p+ = 3p = p0+ + p1+ denote the
total number of genotype categories across the p loci, with
p0+ = ∑p

l=1

∑3
h=1 1(βlh = 0) denoting the number of SNPs

having zero regression coefficients. Then, for βlh ∼ G, it fol-
lows directly from (3) that

Pr(p0+ = h|π0, α0,p+) =
(

p+
h

)

πh
0 (1 − π0)

p−h,

h = 1, . . . , p+, (5)

so that, conditional on π0, the prior distribution for the number
of SNPs having zero coefficients is binomial. We refer to the
group of SNPs having zero coefficients as the null cluster.

Theorem 1. Assume βlh
iid∼ G for l = 1, . . . , p, h = 1,2,3,

with G defined by expressions (3) and (4). Then, letting k∗ de-
note the number of unique nonzero elements of β = (β ′

1, . . . ,

β ′
p), with β l = (βl1, βl2, βl3)

′, the prior distribution for k∗ is

Pr(k∗ = k|π0, α0,p+)

=
p+∑

h=0

(
p+
h

)

(1 − π0)
hπ

p+−h

0

ah(k)αk
0

α
(h)
0

, (6)

where ah(k) are the absolute values of Stirling numbers of the
first kind (refer to Abramowitz and Stegun 1964, p. 833), and
α(h) = α(α + 1) · · · (α + h − 1).

The proof is straightforward using expressions (3) and (4)
and the result of Antoniak (1974), page 1161.

From Theorem 1, it is clear that the number of nonnull clus-
ters, which are defined as groups of SNPs having identical
nonzero regression coefficients, increases stochastically with α0

and decreases with π0. Hence, α0 and π0 are key hyperparame-
ters controlling the clustering of SNPs into null and nonnull
groups. Note also that the number of clusters increases auto-
matically as the number of SNPs under consideration, p+, in-
creases. It is also apparent that the approach performs simulta-
neous variable selection and clustering, classifying a subset of
SNPs as having no effect while clustering the remaining SNPs.

To obtain additional insight into the clustering process, we
derive prior probabilities of the coefficients β falling into dif-
ferent C classes, where β belongs to class C(m0,m1, . . . ,mp+)

if there are m0 elements of β equal to 0, m1 nonzero elements
of β that occur once, m2 nonzero elements that occur twice, up
to mp+ nonzero elements that occur p+ times. It follows that
k = 1(m0 > 0) + ∑p+

h=1 mh = 1(m0 > 0) + k∗ is the number of
unique elements of β , denoted θ = (θ1, . . . , θk)

′.

Theorem 2. Assume βlh
iid∼ G for l = 1, . . . , p, h = 1,2,3,

with G defined by expression (3). Then, the prior probability
that β belongs to class C(m0,m1, . . . ,mp+) is

Pr
{
β ∈ C

(
m0,m1, . . . ,mp+

)}

=
[

p+∑

m0=0

(
p+
m0

)

π
m0
0 (1 − π0)

p+−m0

× (p+ − m0)!
∏p+−m0

h=1 hmh(mh!)
α

∑p+−m0
h=1 mh

0

α
(p+−m0)

0

]

. (7)

This theorem follows from proposition 3 of Antoniak (1974)
after appropriate modification to mix in the fixed point mass.

Theorem 2 can be used to derive the prior probabilities cor-
responding to a number of interesting special cases. For exam-
ple, the probability that none of the SNPs has an effect is sim-
ply Pr{β ∈ C(p+,0, . . . ,0)} = π

p+
0 . The probability that all the

SNPs have an equivalent nonnull effect is

Pr{β ∈ C(0, . . . ,0,1)} = (1 − π0)
p+ α0(p+ − 1)!

∏p+
h=1(α0 + h − 1)

.

Other class probabilities corresponding to different numbers of
null and nonnull SNPs, and various clustering in the nonnull
SNPs, can be calculated easily. Potentially, π0 and α0 can be
chosen subjectively based on back-calculating from these prob-
abilities.
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3.3 Semiparametric Hierarchical Clustering

We now consider the case in which SNPs occur within differ-
ent functionally related genes, and interest focuses on variable
selection and clustering within and across genes. In particular,
to borrow information across genes, it is appealing to develop
a method that allows SNPs for different genes to be assigned
to the same cluster, while also allowing clusters to be gene
specific. One approach would be to extend the prior of Sec-
tion 2.2 to incorporate a c subscript on G and then account for
dependency in the elements of G = {Gc : c = 1, . . . ,C} by ap-
plying the dependent Dirichlet process (DDP) of MacEachern
(1999, 2000; see also De Iorio, Müller, Rosner, and MacEach-
ern 2004). This could be accomplished by defining parallel
stick-breaking formulations for each Gc and modeling depen-
dence through a stochastic process for the atoms.

This DDP approach allows for dependence in the coefficients
between genes but does not allow clustering of SNPs in differ-
ent genes. Another possibility for defining dependence in G is
to use the mixture approach of Müller, Quintana, and Rosner
(2004), letting Gc = πFc + (1 − π)F0, with {F0,F1, . . . ,FC}
assigned independent DP priors. This formulation allows atoms
to be shared across genes through the incorporation of the
global component, F0. Alternatively, one could use the hi-
erarchical DP of Teh, Jordan, Beal, and Blei (2006), which
would let Gc ∼ DP(G), with G ∼ DP(αG0). Either of these ap-
proaches could potentially be generalized to incorporate a point
mass at 0.

We propose a simpler additive formulation more closely re-
lated to traditional multilevel regression models:

βclh = ψc + γclh,

h = 1,2,3, l = 1, . . . , pc, c = 1, . . . ,C,

γclh
iid∼ F, F ∼ δ0DP(π0, α0F0),

(8)
F0 = N+(μ0, σ

2
0 ), ∀c,h, l,

ψc
iid∼ H, H ∼ δ0DP(π1, α1H0),

H0 = N+(μ1, σ
2
1 ), ∀c,

where ψc is a gene-specific factor, γclh is an SNP-specific fac-
tor, and δ0DP(π0, α0F0) is shorthand for the prior described in
expression (3), consisting of a point mass at zero with probabil-
ity π0 and a DP(αF0) prior with probability 1 − π0.

This multilevel formulation allows clustering of SNPs both
within and across genes. For the sake of parsimony, we ignore
possible within-locus dependency in {βcl1, βcl2, βcl3}, which
may arise when one or two copies of a disease allele convey a
similar risk. Our motivation for this simplifying assumption is
that we typically have no a priori knowledge of the dependency
structure, and a priori independence does not imply a posteriori
independence.

There are k� ≤ p+ = 3
∑C

c=1 pc unique values � = (�1, . . . ,

�k� )′ of the SNP-specific factor γ = (γ ′
1, . . . ,γ

′
C), with γ c =

(γ ′
c1, . . . ,γ

′
c,pc

)′ for c = 1, . . . ,C and γ cl = (γcl1, γcl2, γcl3)
′

for l = 1, . . . , pc. There are also k� ≤ C unique values � =
(�1, . . . ,�k� )′ of the gene-specific factor ψ = (ψ1, . . . ,ψC)′.
Because of the masses at 0, one of the unique values of each of
these vectors will typically correspond to 0, so we let �1 = 0

and �1 = 0 without loss of generality. From this characteriza-
tion, SNPs from the same gene (say SNPs c, l, h and c, l′, h′)
belong to the same cluster if γclh = γcl′h′ , whereas SNPs from
different genes (say SNPs c, l, h and c′, l′, h′) belong to the
same cluster if γclh = γc′l′h′ and ψc = ψc′ . In particular, given
that the SNPs are not null, the probabilities of belonging to the
same cluster are

Pr(βclh = βcl′h′ |βclh �= 0, βcl′h′ �= 0)

= π2
0 (1 − π1) + (1 − π0)

2

α0 + 1
,

Pr(βclh = βc′l′h′ |βclh �= 0, βc′l′h′ �= 0)

= π2
1 (1 − π0)

2

α0 + 1
+ (1 − π1)

2π2
0

α1 + 1
+ (1 − π1)

2(1 − π0)
2

(α1 + 1)(α0 + 1)
.

After some algebra, it follows that SNPs from the same gene
are clustered together with higher probability than SNPs from
different genes. Such within-gene dependence is often biologi-
cally reasonable. A priori, SNPs in different regulatory regions
for the same cytokine should have a higher chance of belonging
to the same cluster than SNPs for different cytokines, because
the biological action of cytokines can vary.

To obtain additional insight into the clustering properties, we
focus on the null cluster containing SNPs with zero coefficients.
For greater flexibility, we choose hyperprior densities for π0

and π1 as follows:

π0 ∼ beta(a0, b0) and π1 ∼ beta(a1, b1), (9)

where a = (a1, a2)
′ and b = (b1, b2)

′ are prespecified hyperpa-
rameters. Integrating out π0 and π1, the probability that SNP
c, l, h is null (βclh = 0) is

Pr(βclh = 0|a,b) =
∫ ∫

π0π1
π

a0−1
0 (1 − π0)

b0−1

B(a0, b0)

× π
a1−1
1 (1 − π1)

b1−1

B(a1, b1)
dπ0 dπ1

= a0

a0 + b0

a1

a1 + b1
. (10)

Similarly, the probability that all the SNPs in the cth gene be-
long to the null cluster is

Pr(βc = 0|a,b) = a
(3pc)

0

(a0 + b0)(3pc)

a1

a1 + b1
, (11)

and the probability that all SNPs in all genes belong to the null
cluster is

Pr(β = 0|a,b) = a
(p+)

0

(a0 + b0)(p+)

a
(C)
1

(a1 + b1)(C)
. (12)

To illustrate the dependence structure, note that the probability
that SNP l, h in gene c is null given another SNP l′, h′ in gene
c is null is

Pr(βclh = 0|βcl′h′ = 0,a,b) = Pr(βclh = βcl′h′ = 0|a,b)

Pr(βcl′h′ = 0|a,b)

= a0 + 1

a0 + b0 + 1
, (13)
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which is always higher than Pr(βclh = 0|a,b). If we instead
condition on knowledge that an SNP in a different gene is null,
we obtain

Pr(βclh = 0|βc′l′h′ = 0,a,b)

= Pr(βclh = βc′l′h′ = 0|a,b)

Pr(βc′l′h′ = 0|a,b)

= a0 + 1

a0 + b0 + 1

a1 + 1

a1 + b1 + 1
, (14)

which is also higher than Pr(βclh = 0|a,b) [shown in expres-
sion (10)] but lower than the probability in expression (13).
Thus, the dependence between SNPs in a gene is higher than the
dependence between SNPs in different genes, with the magni-
tude of the difference depending on the hyperparameters a and
b. In the limit as a0 + b0 → ∞ and a1 + b1 → ∞, holding
a0/(a0 + b0) and a1/(a1 + b1) constant, expressions (10), (13),
and (14) are equivalent and there is no borrowing of informa-
tion across SNPs about the probability of membership in the
null cluster.

3.4 Prior Elicitation

Motivated by the cytokine application, we illustrate a strat-
egy for prior elicitation. In particular, in choosing a0, b0, a1, b1,
we recommend back-calculating from prior probabilities cor-
responding to different global and local hypotheses. For ex-
ample, one can specify (i) the prior probability that none of
the SNPs is associated with spontaneous preterm birth, Pr(β =
0|a,b); (ii) the probability that a randomly selected SNP is null,
Pr(βclh = 0|a,b); (iii) the probability that two SNPs within a
gene are null, Pr(βclh = βcl′h′ = 0|a,b); and (iv) the probabil-
ity that two SNPs within different genes are null, Pr(βclh =
βc′l′h′ = 0|a,b). The hierarchical structure implies that the
probabilities are ordered (i) < (iv) < (iii) < (ii), so one should
choose values consistent with this constraint. Because (i)–(iv)
are simple analytic functions of a0, b0, a1, b1, it is straightfor-
ward to solve the system of nonlinear equations using numerical
methods.

In the cytokine application, we let Pr(β = 0|a,b) = .5 to set
the probability of the global null hypothesis equal to .5, corre-
sponding to a 50% chance that any of the SNPs are predictive
of spontaneous preterm birth. This represents a Bayesian ap-
proach to limit false positives that arise in multiple testing. We
then let Pr(βclh = 0|a,b) = .8, noting that the Bayesian Bonfer-
roni approach (Westfall et al. 1997), which treats local hypothe-
ses as independent, ignoring correlation, would instead choose
.51/66 = .990. A 1% chance that an SNP is important is unre-
alistically low, given that we are studying promising candidate
SNPs. In addition, such a low prior probability would result in a
very conservative procedure, requiring very large sample sizes
to detect a health effect of the magnitude that would be expected
in this study (e.g., odds ratio between .5 and 2). As plausible
values for probabilities (iii) and (iv), we choose .75 and .73,
respectively. These values are chosen to be slightly lower than
.8, with a modest degree of within-gene dependence. In simu-
lation studies, we have found a high degree of robustness to the
specific values chosen.

The precision parameters α0 and α1 are assigned gamma hy-
perprior distributions:

α0 ∼ gamma
(
aα0 , bα0

)
and

(15)
α1 ∼ gamma

(
aα1 , bα1

)
,

where aα0, bα0, aα1 , bα1 are prespecified hyperparameters. In
choosing these values, we recommend letting aα0 = bα0 =
aα1 = bα1 = 1 as a somewhat vague prior for the number of
global and local clusters, which favors smaller numbers of clus-
ters.

For the hyperparameters characterizing the base distribu-
tions, μ0, σ

2
0 ,μ1, σ

2
1 , we recommend letting μ0 = μ1 = 0 and

σ 2
0 = σ 2

1 = 1. The resulting F0 and H0 correspond to trun-
cated normal distributions assigning high probability to a wide
range of plausible values for the increase in risk of spontaneous
preterm birth attributable to an adverse genotype. Potentially,
hyperprior densities could be chosen for the means and vari-
ances for greater flexibility. This may be a useful strategy in
cases in which there are very large numbers of candidate genes
and SNPs, and less is known about scientifically plausible val-
ues for the regression coefficients.

4. POSTERIOR COMPUTATION

For ease in posterior computation, we focus on the case in
which the link function L(·) corresponds to the cdf for the t

distribution with ν degrees of freedom:

Pr(yi = 1|gi , zi ) =
∫

�+

∫

�+
N(y∗

i ; z′
iκ + x′

iβ, φ−1
i σ 2)

× gamma(φi;ν/2, ν/2) dφi dy∗
i , (16)

where xi is a vector of 0/1 indicators of genotype category
within each locus of each gene. This form facilitates the use
of an efficient data augmentation algorithm, while also allow-
ing one to obtain a highly accurate approximation to a logis-
tic regression model by letting σ 2 = π(ν − 2)/3ν and ν = 7.3
(O’Brien and Dunson 2004, and the references therein).

Let yi = 1(y∗
i > 0), where y∗

i = z′
iκ + x′

iβ + φ
−1/2
i εi , with

φi ∼ gamma(ν/2, ν/2) and εi ∼ N(0, σ 2). Then, the algorithm
alternates between (1) sampling y∗

i and φi from their respective
truncated normal and gamma full conditional posterior distrib-
utions for i = 1, . . . , n and (2) sampling unknowns related to β
jointly with κ , assuming a N(κ0,
κ ) prior for κ . The first step
is straightforward, so we focus our attention on step 2.

Letting the (clh) superscript denote a quantity obtained ex-
cluding element c, l, h, the conditional prior distribution of γclh

given γ (clh) is

α0(1 − π0)

α0 + p − p
(clh)
�1

− 1
N+(μ0, σ

2
0 ) + π0δ0

+
k
(clh)
�∑

l=2

p
(clh)
�l

(1 − π0)

α0 + p − p
(clh)
�1

− 1
δ
�

(clh)
l

, (17)

where p
(clh)
�l

is the number of elements of γ (clh) equal to �
(clh)
l ,

�(clh) = (�
(clh)
l , l = 1, . . . , k

(clh)
� )′, �

(clh)
1 = 0, �

(clh)
l for l =

2, . . . , k
(clh)
� denotes the unique nonzero values of γ (clh), and

k
(clh)
� is the number of atoms in (17).
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The conditional distribution of ψc given ψ (c) = (ψ1, . . . ,

ψc−1,ψc+1, . . . ,ψC)′ is

α1(1 − π1)

α1 + C − p
(c)
�1

− 1
N+(μ1, σ

2
1 ) + π1δ0

+
k
(c)
�∑

l=2

p
(c)
�l

(1 − π1)

α1 + C − p
(c)
�1

− 1
δ
�

(c)
l

, (18)

where p
(c)
�l

is the number of elements of ψ (c) equal to �
(c)
l ,

�(c) = (�
(c)
l , l = 1, . . . , k

(c)
� )′, �1 = 0, �l for l = 2, . . . , k

(c)
�

denotes the unique nonzero values of ψ (c), and k
(c)
� is the num-

ber of atoms in (18).
As shorthand, let u(clh) = (u

(clh)
0 , u

(clh)
1 , . . . , u

(clh)

k
(clh)
�

)′ and

w(c) = (w
(c)
0 ,w

(c)
1 , . . . ,w

(c)

k
(c)
�

)′ denote the probability weights

on the respective mixture components in expressions (17) and
(18). Updating conditional priors (17) and (18) using informa-
tion in the data, we obtain the following full conditional poste-
rior distributions:

(γclh|−) = U
(clh)
0 N+

(
γclh;E(clh)

γ ,V (clh)
γ

) +
k
(clh)
�∑

l=1

U
(clh)
l δ

�
(clh)
l

,

(19)

(ψc|−) = W
(c)
0 N+

(
ψc;E(c)

ψ ,V
(c)
ψ

) +
k
(c)
�∑

l=1

W
(c)
l δ

�
(c)
l

, (20)

where ỹ
(c)
i = y∗

i − z′
iκ − xiγ − ∑

c′ �=c xic′ψc′ , xic =
∑pc

l=1

∑3
h=1 xiclh, ỹ

(clh)
i = y∗

i − z′
iκ − x(clh)′

i β(clh) − xiclhψc,
the posterior means and variances in the N+(·) components are

V (clh)
γ =

(

σ−2
0 +

n∑

i=1

σ−2
i x2

iclh

)−1

,

E(clh)
γ = V (clh)

γ

(

σ−2
0 μ0 +

n∑

i=1

σ−2
i xiclhỹ

(clh)
i

)

,

V
(c)
ψ =

(

σ−2
1 +

n∑

i=1

σ−2
i x2

ic

)−1

,

E
(c)
ψ = V

(c)
ψ

(

σ−2
1 μ1 +

n∑

i=1

σ−2
i xicỹ

(c)
i

)

,

and the updated mixture weights are defined as follows:

U
(clh)
0 = cu × u

(clh)
0 N+(0;μ0, σ

2
0 )

∏n
i=1 N(ỹ

(clh)
i ;0, σ 2

i )

N+(0;E(clh)
γ ,V

(clh)
γ )

,

U
(clh)
l = cu × u

(clh)
l

n∏

i=1

N
(
ỹ

(clh)
i ;xiclh�

(clh)
l , σ 2

i

)
,

W
(c)
0 = cw × w

(c)
0 N+(0;μ1, σ

2
1 )

∏n
i=1 N(ỹ

(c)
i ;0, σ 2

i )

N+(0;E(c)
ψ ,V

(c)
ψ )

,

W
(c)
l = cw × w

(c)
l

n∏

i=1

N
(
ỹ

(c)
i ;xic�

(c)
l , σ 2

i

)
,

where cu and cw are normalizing constants and σ 2
i = φ−1

i σ 2,
for i = 1, . . . , n.

We follow West, Müler, and Escobar (1994) and MacEach-
ern (1994) in alternating between updating (i) the cluster allo-
cation and (ii) the cluster-specific parameters. Let Sclh = l if
γclh = �

(clh)
l for l = 1, . . . , k

(clh)
� and Tc = l if ψc = �

(c)
l for

l = 1, . . . , k
(c)
� index the allocation of γclh and ψc to clusters.

In addition, let Sclh = 0 denote that γclh /∈ �(clh), so that SNP
c, l, h cannot be grouped with the other SNPs and a new cluster
needs to be introduced. Also, Tc = 0 denotes that ψc /∈ �(c),
so that a new cluster is introduced for gene c. The conditional
posterior distributions of Sclh and Tc are, respectively,
(
Sclh|S(clh),T,�(clh),�,data

)

= Multinomial
(
0,1, . . . , k

(clh)
� ;U(clh)

0 ,U
(clh)
1 , . . . ,U

(clh)

k
(clh)
�

)
,

(21)
(
Tc|S,T(c),�,�(c),data

)

= Multinomial
(
0,1, . . . , k

(c)
� ;W(c)

0 ,W
(c)
1 , . . . ,W

(c)

k
(c)
�

)
. (22)

In step 2(i), we sample from these multinomial distribu-
tions. When Sclh = 0, a new value for γclh is drawn from
N+(E

(clh)
γ ,V

(clh)
γ ), whereas, when Tc = 0, a new value for ψc

is drawn from N+(E
(c)
ψ ,V

(c)
ψ ).

Then, in step 2(ii), we update κ and the cluster-specific para-
meters �∗ = (�2, . . . ,�k� )′ and �∗ = (�2, . . . ,�k� )′ by alter-
nately sampling from their conditional posterior distributions.
Given the cluster allocation indicators, S,T, and number of
clusters, k�, k� , these conditional distributions have normal
and truncated normal forms, so details are excluded. Finally,
the full conditional posterior distributions of π0 and π1 are, re-
spectively

(π0|S,�,T,�,κ,y∗)

= beta

(

a0 +
∑

c,l,h

1(Sclh = 1), b0 + p −
∑

c,l,h

1(Sclh = 1)

)

,

(23)

(π1|S,�,T,�,κ,y∗)

= beta

(

a1 +
C∑

c=1

1(Tc = 1), b1 + C −
C∑

c=1

1(Tc = 1)

)

.

(24)

In step 2(iii), we sample from these conditionals. Finally, in step
2(iv), we update α0 and α1 by applying the approach of Escobar
and West (1995).

5. CYTOKINES AND PRETERM BIRTH APPLICATION

5.1 Real Data Results

We applied the approach to data from the cytokines and spon-
taneous preterm birth application introduced in Section 2. Us-
ing the approach to prior elicitation proposed in Section 3.4,
we obtained a0 = .48, b0 = .089, a1 = .78, b1 = .046, which
implies Pr(βch = 0) = .8 and Pr(β = 0) = .5. We ran analy-
ses separately for African Americans (n = 195) and whites
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Figure 1. Estimated Bayes factors for the different genotype × locus categories of each cytokine (white women).

(n = 252), following standard epidemiologic practice in this
area. In each case, the Markov chain Monte Carlo (MCMC)
algorithm was run for 100,000 iterations, discarding a burn-in
of 5,000 iterations and collecting every 10th sample to thin the
chain. Samples converged quickly to a stationary distribution,
and mixing was rapid, suggesting that the proposed algorithm
is efficient.

For whites, the posterior probability of the global alternative
hypothesis that any of the SNPs were predictive of spontaneous
preterm birth was Pr(H1|data) = .170, with the corresponding
Bayes factor being BF = .204. For African Americans, the val-
ues were Pr(H1|data) = .110 and BF = .123. Hence, the data
support the null hypothesis that cytokine polymorphisms are
not predictive of spontaneous preterm birth. These results are
robust to moderate changes in the prior, and we repeated the
analysis with Pr(β = 0) = .2 and Pr(βch = 0) = .5 without
change in the conclusion. Conclusions were also unchanged
running the analysis for African Americans and whites com-
bined. SNP-specific BFs are provided in Figures 1 and 2 for
whites and African Americans. In each case, the SNP-specific
BFs were well below 1. In general, estimated coefficients given
inclusion in the model tend to parallel the results shown in
Table 1, with the extreme estimates occurring at similar loca-
tions. However, the model-averaged estimates are all approxi-
mately 0, reflecting the low inclusion probabilities.

5.2 Simulation Study

A potential concern is that the approach may be overly
conservative, particularly in cases in which there are effects

only for one or two of the SNPs. In such cases, borrowing
of information across the SNPs regarding the probability of
inclusion in the model can conceivably cause SNP-specific
effects to be obscured. To assess whether the approach is
capable of detecting SNP-specific effects, we ran a small sim-
ulation study. In particular, using the sample size and geno-
type data for the women in the PIN study but randomly per-
muting the assignment of SNPs to subjects, we simulated the
spontaneous preterm birth outcome variable under four differ-
ent scenarios: (i) null model (βclh = 0 for all c, l, h); (ii) one
SNP (cytokine IL13, location −1,112, genotype TC) positive
(β822 = 1, βclh = 0 for all c, l, h �= 8,2,2); (iii) two SNPs pos-
itive (β822 = β912 = 1); and (iv) two nonnull clusters at β = 1
[SNPs {(2,3,2), (3,1,2), (5,1,2), (7,1,2), (9,2,2)}] and β =
1.5 [SNPs {(4,2,2), (6,1,2), (8,2,2), (10,2,2)}].

Under each scenario, we simulated 25 datasets, implement-
ing the MCMC algorithm as for the real data example in each
case, but with the algorithm run for 10,000 iterations with a
1,000 burn-in. Summaries of the results for cases (i)–(iii) are
presented in Table 2. In case (i), 0/25 datasets had estimated
Bayes factors greater than 1 for either the global or the lo-
cal alternative, suggesting that the approach does not tend to
produce many false positives. Motivated by these results, we
recommend a threshold of BF > 1 for identifying interesting
SNPs for further study. Borrowing of information across the
many null SNPs pulls down the BF through a Bayesian adjust-
ment for multiple comparisons, and a higher threshold would
result in very low power. In case (ii), 22/25 of the datasets had
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Figure 2. Estimated Bayes factors for the different genotype × locus categories of each cytokine (African American women).

BF8,2,2 > 1 and 18/25 datasets had a global BF > 1, suggesting
that the approach has good power to detect single SNP effects.
In addition, the preferred model posterior means for the SNP-
specific coefficients were close to the true value, with mild at-
tenuation toward 0. Results were even better in case (iii), with
higher power and less attenuation.

For the more complex case (iv), results are presented in Fig-
ures 3 and 4. Figure 3 shows the estimated marginal inclusion
probabilities for each of the SNPs, ordered so that 1–57 are in
the null cluster, 58–62 are in the β = 1 cluster, and 63–66 are in
the β = 1.5 cluster. Values for each of the 25 simulated datasets
are shown, with the horizontal line representing the average in-

Table 2. Simulation results

Summary across simulations∗

Case Quantity Mean Median [25th, 75th] Proportion > 0

(i) log BF −2.31 −2.40 [−2.56, −2.08] .00
log BF− −3.89 −4.04 [−4.18, −3.65] .00

β− .0013 .001 [.0007, .0016] 1.00

(ii) log BF 2.26 2.75 [−.77, 4.62] .72
log BF8,3 3.35 4.06 [.40, 5.84] .88
log BF− −2.76 −2.61 [−3.37, −2.32] .00

β8,3 .72∗ .92 [.00, 1.07] .72
β− .0005 .0000 [.0000, .0000] .04

(iii) log BF >10 6.11 [3.64, >10] 1.00
log BF8,3 >10 4.84 [3.13, 7.47] .96
log BF9,1 >10 5.20 [1.98, 6.96] 1.00
log BF− −2.12 −2.14 [−2.41, −1.78] .00

β8,3 .82 .87 [.80, 1.02] .88
β9,1 .82 .89 [.69, .97] .92
β− .0000 .0000 [.0000, .0000] .0000

NOTE: BF, global Bayes factor in favor of H1; BFc,h , local Bayes factor in favor of H1,ch , (β−,BF−), average coefficients and BFs for negative SNPs.
∗Preferred model estimator of coefficients (0 if posterior probability inclusion is less then .5).
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Figure 3. Posterior inclusion probabilities for each SNP in the simulation case (iv). SNPs 1–57 are null, SNPs 58–62 have a coefficient of 1,
and SNPs 63–66 have a coefficient of 1.5.

Figure 4. Preferred model posterior means (solid lines) and true values (dashed lines) of the coefficients within each cluster in simulation
case (iv).
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clusion probability across SNPs in a cluster and across datasets.
Clearly, the approach tends to assign substantially higher inclu-
sion probabilities to the SNPs in the two nonnull clusters. Fig-
ure 4 shows the preferred model posterior means for βclh for all
c, l, h across the different simulated datasets. On average, the
null SNPs have estimated coefficients close to 0, while the non-
null SNPs have estimated coefficients close to the true value.

6. DISCUSSION

This article has proposed a semiparametric Bayesian ap-
proach for simultaneous variable selection and clustering in ap-
plications involving many related predictors. There is a rapidly
expanding literature on methods for identifying important pre-
dictors from an extremely high-dimensional set of candidates,
primarily motivated by gene expression data (Efron, Tibshi-
rani, Storey, and Tusher 2001; Newton, Kendziorski, Rich-
mond, Blattner, and Tsui 2001; Ibrahim, Chen, and Gray 2002;
among many others). Our motivation is somewhat different in
that we are interested in more focused genetic studies that col-
lect genotype data at a moderate number of locations (e.g.,
30+), corresponding to regulatory or coding regions for func-
tionally related genes. Such studies are potentially conducted
as a second stage after preliminary identification of promising
candidate genes through gene expression studies. Because we
have a more modest number of predictors, we can be more am-
bitious in attempting to address questions about overall signifi-
cance and clustering of effect sizes. Our method should also be
useful in epidemiologic studies collecting information for en-
vironmental exposures, such as pesticides or nutrients, that can
be grouped into prespecified classes.

Our motivation was genetic epidemiology studies in which
investigators preselect SNPs based on presumed functionality
judged from the literature. This extremely common strategy
tends to limit the number of SNPs that need to be genotyped,
but can potentially misrepresent variation within a gene. Tech-
nological advances now allow one to use a dense collection of
tagSNPs that may have no function in themselves but are in-
stead markers of variability within a gene. TagSNPs can be se-
lected to be approximately evenly spaced across a gene, or they
can be selected on the basis of estimates of linkage disequilib-
rium (LD), which will result in a denser set of markers cov-
ering areas of low LD. Our proposed method is promising as
an approach for identifying regions of a gene that may contain
a functional SNP(s) from a field of anonymous tagSNPs. Oth-
erwise, by relying on preselection of a small number of SNPs,
there is always the possibility that important variability exists at
other locations. Hence, inferences are necessarily limited by the
SNPs chosen, and one cannot make general conclusions about
the importance of a particular gene in predicting a health out-
come.

We have proposed a particular strategy of prior elicitation
that treats the different SNPs as exchangeable within a gene,
while also treating the genes as exchangeable. Although this is
a reasonable default strategy for many studies, in certain cases
there may be information available to suggest that certain genes
and SNPs are particularly promising candidates, while little or
no information is available for others. In such cases, as noted by
Wacholder, Chanock, Garcia-Closas, El Ghormli, and Rothman

(2004), the exchangeability assumption is implausible. Fortu-
nately, it is straightforward to modify our procedure to allow the
prior probabilities of inclusion to vary for the different genes
and SNPs under study. In future work, it will be interesting
to extend the methodology to accommodate missing genotype
data.

[Received August 2005. Revised January 2007.]
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